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Abstract: Inferring gene regulatory networks (GRNs) from single-cell RNA-seq (scRNA-seq) data
is an important computational question to find regulatory mechanisms involved in fundamental
cellular processes. Although many computational methods have been designed to predict GRNs
from scRNA-seq data, they usually have high false positive rates and none infer GRNs by directly
using the paired datasets of case-versus-control experiments. Here we present a novel deep-learning-
based method, named scTIGER, for GRN detection by using the co-differential relationships of gene
expression profiles in paired scRNA-seq datasets. scTIGER employs cell-type-based pseudotiming,
an attention-based convolutional neural network method and permutation-based significance testing
for inferring GRNs among gene modules. As state-of-the-art applications, we first applied scTIGER
to scRNA-seq datasets of prostate cancer cells, and successfully identified the dynamic regulatory
networks of AR, ERG, PTEN and ATF3 for same-cell type between prostatic cancerous and normal
conditions, and two-cell types within the prostatic cancerous environment. We then applied scTIGER
to scRNA-seq data from neurons with and without fear memory and detected specific regulatory
networks for BDNF, CREB1 and MAPK4. Additionally, scTIGER demonstrates robustness against
high levels of dropout noise in scRNA-seq data.

Keywords: scRNA-seq; gene regulatory network; deep learning; gene co-differential expression
network; memory formation; prostate cancer

1. Introduction

Novel single-cell RNA (scRNA) technologies have enabled the monitoring of biolog-
ical systems and complex tissues to deeply analyze characterizing rare cell populations,
examining molecular heterogeneity across cell populations, and investigating the transcrip-
tional dynamics throughout disease pathology [1–4]. Among diverse computational tasks
in scRNA-seq data analysis, inferring gene regulatory networks (GRNs) remains as one of
the major challenges [5–7]. GRNs refer to the complex systems of interactions among genes
and other regulatory molecules that control the expression of genes in cells or organisms.
In network terminology, GRNs are constructed by nodes representing regulators and their
target genes, and edges representing the regulatory relationships between genes. GRNs
are important for the proper functioning and development of organisms and play a critical
role in controlling many biological processes, including cell differentiation, tissue devel-
opment, and response to environmental stimuli [8,9]. By understanding how GRNs work,
researchers can gain insights into the underlying mechanisms of disease, as well as develop
new approaches for treating or preventing various conditions [10,11]. Compared with bulk
RNA-seq, inferring GRNs from scRNA-seq data has two major advantages. First, scRNA-
seq allows for the capture of gene expression patterns at the single-cell level, facilitating the
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examination of dynamic changes in gene regulatory networks during development or in
response to perturbations, which in turn provides a more comprehensive understanding
of cellular behavior. Second, scRNA-seq enables the identification of different cell types
and subpopulations within tissues, allowing for a more accurate representation of gene
regulatory networks [2,3,5,6,12].

Although inferring GRNs from scRNA-seq data provides a promising way for under-
standing the complex regulatory mechanisms that control gene expression and cellular
behavior, it presents computational challenges in designing network inference algorithms
that can handle high-dimensional, noisy data and identify causal relationships between
genes [5–7]. To address this challenge, many computational approaches have been specifi-
cally developed for inferring networks from scRNA-seq data. For instance, SCENIC [13]
combines gene expression data with information from gene regulatory databases to identify
transcription factors that drive the expression of downstream target genes. SCODE [14]
uses a deconvolution approach to identify the expression levels of transcription factors and
their target genes within each cell and integrates these expression levels with prior knowl-
edge of known regulatory interactions to infer a GRN. SCOUP [15] employs a combination
of unsupervised clustering and network inference methods to identify cell subpopulations
and infer GRNs. PIDC [16] uses the partial information decomposition method for infer-
ring dynamic GRNs from scRNA-seq time-series data. GENIE3 [17] is a machine learning
method that uses a random forest algorithm to identify the most important regulatory in-
teractions between genes. WGCNA [18] constructs a co-expression network by calculating
the correlation between gene expression profiles and identifies modules of co-expressed
genes. It then infers GRNs within each module by calculating the partial correlation be-
tween genes. ShareNet [19] employs a Bayesian framework for boosting the accuracy of
cell-type-specific gene regulatory networks for a given single-cell dataset. To improve the
performance of GRN inference, new methods integrated additional single-cell omics data
to filter and/or highlight true regulatory relationships among genes [20]. For example,
NetAct [21] constructs core transcription factor regulatory networks using both transcrip-
tomics data and literature-based transcription factor-target databases. DeepDRIM [22] is a
novel supervised method based on deep neural networks to utilize the image of the target
TF-gene pair and the ones of the potential neighbors to reconstruct GRN from scRNA-seq
data. iGRN [23] incorporates multi-omics data (gene expressions, copy number variations,
DNA methylations, and their genetic interactions) to construct gene regulatory networks.

While there has been significant progress in inferring GRN from scRNA-seq using
computational methods, there are still several limitations that need to be addressed. First,
there is a lack of methods for inferring condition-specific GRNs from case-versus-control
scRNA-seq experiments (e.g., healthy vs. cancer, or perturbation vs. non-perturbation)
that are widely applied in biological research. Such analysis is important not only for
identifying dysregulated regulatory networks in disease states, but also for investigating
molecular mechanisms in biological systems with environmental perturbations. Second,
the accuracy of GRN inference algorithms is mainly affected by high rates of false-positive
and false-negative interactions [7]. False-positive interactions are correlations that are
detected as significant but are actually due to chance or confounding factors, while false-
negative interactions are true correlations that are not detected as significant due to noise
or other limitations. The high false-positive rates are observed in many correlation-based
methods such as WGCNA [18], SCENIC [13] and SCODE [14], which mainly rely on
pairwise correlation measures such as Pearson correlation, Spearman correlation, or mutual
information to identify co-expression patterns between genes. Although the correlation
matrix of gene expression levels can be used to construct a network or graph representing
regulatory interactions between genes, correlation does not always imply causation, and
spurious correlations can arise due to confounding factors or other biases. For example,
two genes may be co-expressed during the cell cycle in the same cell type, but one gene may
not actually regulate the other. Third, current scRNA-seq-based research lacks time-series
data and/or additional omics data, which makes it difficult to identify causal relationships.
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While GRN inference algorithms can uncover statistical correlations between genes, they
do not offer direct evidence of causality. To establish causality in gene expression data,
researchers traditionally rely on large time-series datasets, which are not currently available
in scRNA-seq experiments. Moreover, many scRNA-seq experiments lack paired omics
data such as chromatin accessibility, histone modifications, or genetic variants, which
makes certain methods (i.e., iGRN, DeepDRIM, and NetAct) impractical and of lower
precision. As a result, the lack of scRNA-seq time-series data and/or additional omics data
poses a significant challenge in identifying key regulatory nodes, limits the effectiveness of
computational analysis, and reduces the interpretability of inferred networks. Overall, these
limitations underscore the need for designing computational methods for GRN inference
from abundant case vs. control scRNA-seq datasets, with a focus on improving accuracy
and interpretability.

In this study, we propose a novel deep-learning-based method named scTIGER (single-
cell temporal inference of gene expression regulation) for inferring GRNs from case versus
control scRNA-seq datasets. scTIGER initially constructs the gene co-differential expres-
sion network (GCEN), comprising edges only among genes that exhibit coupled changes
between the two conditions. scTIGER combines three major strategies: cell-type-based
pseudotiming [24], temporal causal discovery framework [25], and permutation-based
significance testing models, to infer causal relationships among genes. To benchmark this
state-of-the-art method, we first applied scTIGER to scRNA-seq datasets from patient sam-
ples with prostate cancer and specifically focused on identifying the dynamic regulatory
networks of AR, ERG, PTEN, and ATF3 for the same-cell type between prostatic cancerous
and normal conditions, and two-cell types within the cancerous prostatic environment. We
then applied scTIGER to scRNA-seq data from neurons with and without fear memory
to detect specific regulatory networks of BDNF, CREB1, and MAPK4 that are involved in
remote memory formation in the mouse brain. In both applications, scTIGER not only
predicted condition-specific GRNs for the same cell types, but also cell-specific GRNs across
different cell types within the same condition. These results demonstrate that scTIGER is
an effective method for detecting regulatory relationships through general case vs. control
scRNA-seq datasets.

2. Results
2.1. scTIGER Pipeline

The scTIGER method employs two innovative strategies to construct GRNs from
paired scRNA-seq datasets, such as case vs. control (Figure 1a). The first strategy addresses
the limitation of time-series data by utilizing pseudotiming, which orders the cells and
provides a chronological view of the whole-genome gene expression profile. This enables
the identification of ordered changes in gene expression. The second strategy involves
filtering false-positive regulations by considering the correlations of differential expression
vectors within given gene sets. As depicted in Figure 1b, gene pairs lacking high co-
differential relationships are discarded, even if they exhibit high correlations of expressions
under two conditions. This approach helps mitigate potential false positives that may
be predicted by methods solely relying on gene expression correlations. When applied
to the same-cell type under two different conditions, scTIGER enables the investigation
of GRNs through which the cell modifies its regulatory patterns in response to changes
in conditions. Additionally, when applied to two different cell types under the same
experimental condition, scTIGER provides insight into how these cell types exhibit similar
mechanisms within a specific condition (Figure 1c).
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Figure 1. Computational workflow and applications of scTIGER. (a) The main workflow is depicted.
The predicted causal relationships among genes are presented as a directed causal graph (i.e., regula-
tory network). (b) Correlations in co-differential expression among genes can be used to determine
causal relationships. Genes that exhibit correlated expression patterns but lack co-differential correla-
tions between the two conditions are theoretically excluded from the regulatory network. (c) scTIGER
has the capability to detect regulatory networks by comparing different cell types and conditions.
Distinct colors represent different cell types, while the same color with either a dark or light style
signifies identical cell types in two conditions.

The scTIGER pipeline is designed for ease of use in a Linux environment, allowing for
simple single-line command execution. It offers flexibility by accepting various user-defined
parameters, including single or multiple genes of interest, the number of permutations, the
selection of top genes for attention-based deep learning, the threshold for dropout percentage
permitted for gene inclusion in the analysis, significance levels for predicted regulations, and
the maximum number of time steps allowed for an inferred edge. Additionally, scTIGER
provides the option to utilize CUDA for accelerated processing if desired.

The output of scTIGER also prioritizes a user-friendly experience. Instead of generat-
ing pre-graphed and unmodifiable images, scTIGER produces GraphML files that can be
imported into the user’s preferred network graphing software. Individual files are gener-
ated for each gene of interest, and a merged file consolidates the global interactions from all
genes into a cohesive network. scTIGER also provides histograms illustrating the number
of interactions detected at specific frequencies, offering visual assistance in determining
statistically significant interactions for inclusion in the network file. Furthermore, the
scTIGER package provides a Cytoscape-style file for visualizing causal interactions along
with their regulation types. The raw output files contain information on causal interactions,
regulation types, time delays between regulations, and the frequency of detection. The
scTIGER package also includes sample datasets, sample commands for installation testing,
and replication of the analyses conducted here, along with sample outputs for comparison.
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2.2. Comparing scTIGER Performance with Other Methods

To benchmark scTIGER’s performance in detecting GRNs, we compared scTIGER’s
performance to five existing models, i.e., PIDC [16], SINCERITIES [26], SCODE [14], GRN-
Boost2 [27], and PPCOR [28] whose properties are detailed in Table 1. We utilized synthetic
and curated datasets that were previously used to compare many GRN models [29], includ-
ing a linear trajectory (LI), cyclical trajectory (CY), hematopoietic stem cell differentiation
(HSC), and mammalian cortical area development (mCAD). Please note, due to the lack of
benchmarking datasets for paired case versus control data, the benchmarking only covers
the inference of edges using the deep-learning algorithm, permutation, and significance
threshold calculation steps.

Table 1. scTIGER properties compared with existing models.

Method Category Directed Signed Additional Required Input

scTIGER Corr 3 3 -
PIDC MI 8 8 -

SINCERITIES Reg 3 3 -
GRNBoost2 RF 3 8 -

PPCOR Corr 8 3 -
SCODE ODE + Reg 3 3 ODE Parameters

Note. MI: Mutual Information, RF: Random Forest, Corr: Correlation, ODE: Ordinary Differential Equations, Reg:
Regression. “-” indicates not required.

When benchmarking scTIGER against current models, we calculated the precision, recall,
F1 score, and specificity for each on four datasets. We find that scTIGER outperforms the
other five existing models in various criteria across four different datasets (Table 2). In terms
of recall, which measures the ability to identify true positives, scTIGER consistently achieves
high scores in three datasets (LI, CY, and HSC), especially on LI and CY trajectories where it
achieves a perfect recall score of 1. scTIGER also achieves the highest precision scores on LI, CY,
and HSC with scores of 1, 0.75, and 0.56, respectively. While some methods, like GRNBoost2,
perform well on specific datasets (e.g., mCAD), scTIGER maintains its competitive edge by
achieving high specificity on the LI and CY datasets. The F1 score, which considers both
precision and recall, demonstrates that scTIGER strikes well-balanced performance across
various datasets, outperforming other methods on LI, CY, and HSC with F1 scores of 1, 0.857,
and 0.609, respectively. Thus, scTIGER consistently performs well across different datasets,
making it a robust and reliable choice for inferring gene regulatory networks.

Table 2. Comparing scTIGER performance with five existing models.

Method Criteria LI CY HSC mCAD

scTIGER

Recall 1 1 0.667 0.667
Precision 1 0.75 0.56 0.85

Specificity 1 0.778 0.676 0
F1 Score 1 0.857 0.609 0.75

PIDC

Recall 1 1 0.619 0.667
Precision 0.583 0.75 0.52 0.85

Specificity 0.643 0.778 0.647 0
F1 Score 0.636 0.857 0.565 0.75

SINCERITIES

Recall 0.286 0.667 0.667 1
Precision 0.25 0.4 0.452 0.9

Specificity 0.571 0.333 0.5 0
F1 Score 0.267 0.5 0.538 0.947

GRNBoost2

Recall 0.857 1 0.667 1
Precision 0.667 0.75 0.56 0.9

Specificity 0.786 0.778 0.676 0
F1 Score 0.75 0.857 0.609 0.947
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Table 2. Cont.

Method Criteria LI CY HSC mCAD

PPCOR

Recall 0.857 0.667 0.190 0.444
Precision 1 0.667 0.571 0.8

Specificity 1 0.778 0.912 0
F1 Score 0.923 0.667 0.286 0.571

SCODE

Recall 0.571 0.333 0.667 1
Precision 0.5 0.25 0.452 0.9

Specificity 0.714 0.333 0.5 0
F1 Score 0.533 0.286 0.538 0.947

2.3. scTIGER Detected Potential AR Regulatory Network in Prostatic Cancerous vs. Normal Cells

To showcase the capability of scTIGER in exploring novel regulations, we utilized scRNA-
seq datasets obtained from patient samples with prostate cancer [30]. Our analysis encom-
passed the identification of regulatory differences between prostate cancer (PCa) samples
and their corresponding normal prostate cells. Additionally, we investigated common reg-
ulations occurring between tumorigenic endothelial cells (ECs) and smooth muscle cells
(SMCs). Notably, ECs play a pivotal role in PCa progression and metastasis, serving as a
crucial barrier that cancer cells must breach to access the bloodstream. This transition from
non-metastatic to metastatic cancers marks a critical turning point [31–35]. Furthermore, SMCs
represent another vital barrier against PCa progression. The prostate is extensively enveloped
by smooth muscle, necessitating cancer cells to infiltrate and traverse these cells to reach the
endothelial cells. Consequently, understanding gene regulation surrounding PCa metastasis
demands insights into the interplay within this cell type as well [36,37]. In this section, our
focus centered on three extensively studied cell-specific and/or oncogenes in ECs: AR, ERG,
and PTEN. Specifically, we applied scTIGER to investigate the regulatory dynamics of these
genes, aiming to uncover their roles and interactions within the context of prostate cancer.

The AR gene encodes the androgen receptor protein, which is a steroid-hormone-
activated master regulator in prostate tissues [38,39] and plays a critical role in prostate can-
cer progression [40]. AR-mediated signaling is a distinctive hallmark of PCa, characterized
by hyperactivation of the AR receptor, which leads to increased local androgen synthesis,
upregulation of coactivators, and downregulation of corepressors [40,41]. scTIGER analysis
identified 41 significant interactions directly linked to AR (Figure 2a). Several of the de-
tected interactions, such as NOB1, REV1, and ROBO1, showed upregulation by AR, while
CAV2 and BAG3 exhibited downregulation by AR. Over 85% of these interactions have
been reported in the literature (Figure 2a, Table S1). Further investigation was conducted
to understand the functions of these AR-regulated genes. First, AR was found to regulate
AHNAK2, CNRIP1, GPM6A, and CHP1, which are associated with calcium regulation,
as well as ARF5, GCC2, and UBL3, which play a role in vesicle trafficking (Figure 2a).
These findings align with previous studies indicating that alterations in calcium regulation
and vesicle trafficking can promote the growth and metastasis of PCa [42–44]. Second,
scTIGER detected AR-regulated genes associated with changes in the initiation steps of
translation, resulting in an overall decrease in mRNA translation in PCa [45,46]. Specifically,
scTIGER identified AR downregulating NSUN6 expression in PCa, and it has been shown
that mRNAs associated with NSUN6 exhibit higher rates of translation, thus causing a
decrease in overall translation [47]. The observed increase in AR expression in PCa would
consequently lead to a decrease in NSUN6 expression and translation rates. Additionally,
upregulation of AR in PCa is co-regulated by YTHDF3 [48]. scTIGER identified AR as
upregulating YTHDF3 expression, suggesting a potential indirect positive feedback loop
between the two genes, promoting the upregulation of both AR and YTHDF3 to create an
environment conducive to PCa (Figure 2a). Furthermore, NOB1, a gene associated with
ribosome formation, is a known oncogene that is upregulated in PCa and associated with
cell proliferation [49]. scTIGER revealed the upregulation of NOB1 expression by AR in
PCa, aligning with literature findings on PCa progression. Third, scTIGER identified the
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regulation of DOCK4 by AR. DOCK4 is a key gene involved in PCa metastasis through
cytoskeletal regulatory adjustments [50–52]. ChIP-seq experiments have shown that AR
targets DOCK4, and previous research has demonstrated that DOCK4 is overexpressed
in PCa, leading to metastatic prostate cancer. Reducing the concentration of DOCK4 to
normal levels has been shown to decrease cell invasion [53,54]. Here, scTIGER confirmed
the regulation of DOCK4 by AR (Figure 2a).
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Figure 2. Predicted GRNs of AR, PTEN, and ERG in ECs. GRNs show the regulatory relationships by
comparing cancerous versus normal conditions for (a) AR, (b) PTEN, and (c) ERG. Shapes represent
the processes in which each gene’s corresponding gene product is involved. Only nodes directly
connected to the genes of interest are displayed. The arrowheads and T-heads indicate the positive
and negative regulation, respectively. Blue edges denote literature verified relationships and grey
edges denote potential novel regulations.
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Previous studies have demonstrated that the AR signaling pathway is associated
with decreased PTEN expression [41]. PTEN encodes an enzyme that acts as a tumor
suppressor by inhibiting the P13K/AKT signaling pathway, which is known to promote
PCa survival and growth [41,55]. In our analysis, we focused on investigating PTEN using
scTIGER and identified several significant interactions directly related to PTEN (Figure 2b).
Notably, some of these interactions include the upregulation of RAB4A, LAMA5, and
STX12 by PTEN, and the downregulation of ACAP2 and MGLL (Figure 2b). Out of the
23 interactions detected with a direct link to PTEN, 11 interactions were supported by
the literature (Figure 2b, Table S1). One noteworthy downstream regulatory element of
PTEN is GOLGA2, which requires PTEN to prevent the activation of an alternative splicing
site for proper function. Activation of this alternative splicing site disrupts the Golgi
secretory pathway, contributing to PCa metastasis [56]. scTIGER successfully detected
the positive regulatory relationship between PTEN and GOLGA2 (Figure 2b). Another
important gene is SLC39A7, a zinc regulator. Accumulation of zinc is crucial for normal
prostate maintenance, but it is often found to be underexpressed in PCa [57–59]. scTIGER
identified a positive regulatory relationship between PTEN and SLC39A7, suggesting
that the downregulation of SLC39A7 could be linked to decreased expression of PTEN
(Figure 2b).

For ERG, scTIGER detected a few significant interactions directly related to this gene
(Figure 2c). Among the four genes with an edge to ERG, two interactions were supported
by the literature (Table S1). All these interactions were targets of ERG and exhibited down-
regulation patterns. The supported interactions involved ERG downregulating HCLS1 and
DDRGK1 (Figure 2c, Table S1).

To explore potential functional connections among AR, PTEN, and ERG, we examined
the combined interactions of their predicted GRNs. Even when considering only genes
within one step of the genes of interest, we observed the regulation of SH3BGRL2 by both
PTEN and AR (Figure S1). In both cases, this regulation would lead to a decrease in the
gene product. Increased AR expression in PCa results in the downregulation of SH3BGRL2
through MMP24OS, while decreased PTEN levels in PCa correspond to the downregulation
of SH3BGRL2 (Figure S1). This concept finds partial support in previous studies indicating
that SH3BGRL2 acts as a tumor suppressor in clear cell renal cell carcinoma [60]. Given the
potential tumor suppressor functionality of SH3BGRL2 in PCa, the dual downregulation
observed here presents a plausible hypothesis. These findings highlight that scTIGER not
only recovers known edges and uncovers new ones but also identifies potentially important
regulatory patterns by combining the results from multiple genes of interest.

2.4. scTIGER Detected Potential AR Regulatory Network in Different Cell Types in
Prostatic Environments

We then utilized scTIGER to identify the regulations by using the co-differential expres-
sion of ECs and SMCs in PCa (Figure 3). Understanding such regulations between cell types
in a disease is essential because cell-specific gene co-differential changes provide insights
into genes that are uniformly expressed across different cancer cell types. It has the poten-
tial to facilitate the tracking of dedifferentiation or transdifferentiation processes in PCa or
other diseases [61–63]. A total of 51 significant interactions were identified for AR, among
which more than 65% have been documented in the literature (Figure 3a, Table S2). The
interactions detected by scTIGER reveal broad functional regulations in ECs and SMCs corre-
sponding to tumor suppression and apoptosis, transcription and translation, post-translational
modifications, DNA repair and replication, cell adhesion, and cellular transport.
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Figure 3. Predicted GRNs of AR, PTEN, and ATF3. GRNs show the regulatory relationships by
comparing ECs and SMCs under cancerous condition for (a) AR, (b) ATF3, and (c) PTEN. Shapes
represent the processes in which each gene’s corresponding gene product is involved. Only nodes
directly connected to the genes of interest are displayed. The arrowheads and T-heads indicate the
positive and negative regulation, respectively. Blue edges denote literature-verified relationships and
grey edges denote potential novel regulations.

When examining the interactions associated with PTEN in ECs and SMCs in PCa,
we detected 9 significant regulations, and 5 of them were documented in the literature
(Figure 3b, Table S2). These interactions involve the immune response, cell surface receptor
signaling, mitochondrial function, cell adhesion and differentiation, post-transcriptional
modifications, and Golgi surface recycling. For ATF3, scTIGER detected 23 interactions and
we found that 60% of the significantly detected interactions were verified in the literature
(Figure 3c, Table S2). These ATF3-regulated genes are enriched in tumor suppression and
apoptosis, transcription and translation, cellular transport, mitochondrial function, and
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protein degradation. When merging the three GRNs together, a connected network was
obtained (Figure S2). The merged network reveals that multiple genes (PDCD7, CFI, KIF1B)
are commonly regulated by both AR and ATF3, and a gene (GLRX5) is commonly regulated
by both ATF3 and PTEN.

2.5. scTIGER Detected Potential Regulatory Networks in Neurons with and without Memories

We further employed scTIGER on a dataset containing neural and neural-associated cells
from fear-conditioned mice, with non-conditioned mice serving as the control. Previously, we
identified a set of differentially expressed genes (DEGs) that may be involved in remote memory
formation [64], but the exploration of regulatory relationships among these DEGs has been
limited. In this study, we focused on BDNF, CREB1, and MAPK4, which have documented
impacts on remote memory formation, consolidation, recall, or reconsolidation. BDNF is
responsible for regulating inhibitory and excitatory synaptic transmission and can contribute to
cell proliferation, memory storage, and/or access [65]. Additionally, BDNF has been implicated
as a key regulator in the memory reconsolidation pathway for modifying remote memory [66].
CREB1 is a crucial transcription factor in remote memory formation [67,68]. A study on CREB
functionality in medial prefrontal cortex cells demonstrated CREB-dependent transcription
in relation to remote memory [69]. MAPK4 is a recently identified mitogen-activated
protein kinase linked to remote memory formation [70–72].

We utilized the expression profiles of FC-pos cells and FC-neg cells for GRN inference,
resulting in the prediction of 5, 6, and 1 regulations for BDNF, CREB1, and MAPK4,
respectively. To verify the edges for the first neighbors of the genes of interest, we conducted
a literature search. Out of the 12 significant interactions detected, 8 were supported
by the literature (Figure 4, Table S3). Notably, all 4 edges in the GRN of BDNF were
validated by literature evidence (Figure 4a, Table S3). When scTIGER was applied to CREB1,
6 significant interactions were detected, and 4 of them were supported by the literature
(Figure 4b, Table S3). Only one significant interaction was detected for MAPK4 (Figure 4c,
Table S3). Overall, the small numbers of predicted regulations and high proportions of
literature supported results demonstrate that scTIGER can accurately identify true edges
with directionality and potentially discover new edges, while minimizing false positives
for genes that lack cell- or condition-specific functions.
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2.6. Robustness against Dropouts and Cell Orders

Dropout counts, which occur when a gene is expressed in one cell but not in another
cell of the same type, are a consequence of the low capture efficiency inherent in scRNA-seq
methods. To assess the reliability of scTIGER in inferring GRNs, we conducted experiments
using artificially inserted dropouts at various levels in real scRNA-seq data. In the original
scRNA-seq dataset, the dropout level was already substantial, reaching approximately 90%.
By introducing 1% artificial dropouts, we examined whether scTIGER could consistently
generate reliable GRN predictions. Remarkably, the GRN associated with the AR exhibited
a highly conserved pattern, with a median overlap of 100% and a minimum overlap of
83.33% across 10 independent runs (Figure S3). When the dropout level was increased to
2%, the median overlap decreased to 66.67%. However, when 5% artificial dropouts were
inserted, the overlap dropped to 25%. These findings suggest that scTIGER demonstrates
remarkable robustness when the dropout levels remain below 91%, which is typically the
upper limit for most current scRNA-seq datasets.

We then tested scTIGER to determine if there was a significant difference when calculat-
ing the differential expressions by using different orders of two datasets (e.g., case–control
or control–case). For example, scTIGER was implemented by using ECs as the case condi-
tion and SMCs as the control condition (Figure 3). When they were flipped, the detected
GRNs contain mostly the same interactions (Figure S4).

To ensure the reliability of our pseudotiming approach in ordering cells, it is impor-
tant to investigate whether different cell orders initially inputted would lead to different
predictions. To test this, we randomly changed the column positions (i.e., cells) and reran
scTIGER. However, no changes in the results were observed, indicating that the pseudo-
timing procedure can accurately reconstruct the cell orders. As a benchmarking measure,
we also performed a random shuffling of the input gene expression matrices and reran
scTIGER. However, we failed to detect any significant regulations. These validation tests
collectively demonstrate that scTIGER has the ability to infer potential regulations that
would otherwise remain hidden within scRNA-seq data.

3. Discussion

We developed a novel method called scTIGER and demonstrated its effectiveness in
uncovering regulatory information from scRNA-seq data. By leveraging pseudotiming to
order cells, scTIGER reliably reconstructed cell orders, ensuring accurate predictions of
regulatory interactions. Applying scTIGER to diverse datasets enabled us to investigate
common potential regulations among different cell types within the same disease context.
By focusing on specific genes of interest, such as AR, PTEN, and ERG, known to impact
prostate cancer progression and metastasis, we discovered novel regulatory interactions.
Importantly, scTIGER successfully identified known interactions reported in the literature,
validating our approach. We extended the application of scTIGER to investigate neural
and neural-associated cells involved in fear conditioning. By selecting BDNF, CREB1, and
MAPK4, known to play roles in memory formation, consolidation, and recall, we uncovered
regulatory interactions related to remote memory processes. The literature verification of
these detected interactions confirmed the reliability of scTIGER in capturing biologically
meaningful regulatory relationships. Notably, scTIGER’s ability to reveal previously un-
known edges suggests its potential in discovering novel regulatory connections that may
have been overlooked in traditional analyses.

An intriguing observation is the identification of commonly regulated genes across
different GRNs. For instance, the gene SH3BGRL2 is found to be regulated by both PTEN
and AR (Figure S1). Additionally, we observe that multiple genes, PDCD7, CFI, and KIF1B,
are commonly regulated by both AR and ATF3 (Figure S2). These findings highlight po-
tential connections between different GRNs, indicating a coupled regulatory influence on
specific genes. Such information is invaluable for further investigations into co-regulation
mechanisms, offering insights into potential combinatorial drug targets. By understand-
ing the shared regulatory patterns of these genes, we can explore targeted therapeutic
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approaches that address multiple pathways simultaneously. This integrative approach has
the potential to enhance treatment efficacy and develop more precise interventions in the
field of molecular medicine.

Although the real applications on scRNA-seq of prostate cancer and engram neurons
are quite promising, one limitation of this research is the absence of benchmarking datasets
for case-control studies. To address this, we propose generating simulation datasets as a
valuable approach to validate and benchmark the performance of scTIGER in case-control
studies. Simulated datasets allow us to have control over the underlying regulatory relation-
ships, noise levels, and other factors, providing a baseline for comparison and evaluation.
In brief, we can define the regulatory relationships among target genes and their cor-
responding regulators, simulate gene expression data based on these relationships and
experimental conditions using mathematical models [29,73] such as differential equations
or Boolean networks, and introduce appropriate levels of noise to mimic the variability
and measurement errors observed in scRNA-seq data. Additionally, we can incorporate
technical variations typical in scRNA-seq experiments, such as dropout events and am-
plification biases, to make the simulated datasets more realistic. With these simulation
datasets, we can apply scTIGER and assess its performance in inferring the underlying
regulatory relationships. By comparing the predicted regulatory interactions with the
known interactions in the simulated data and evaluating various performance metrics such
as precision, recall, and F1 score, we can quantify the accuracy of scTIGER’s predictions.
We plan to conduct such simulation studies in the near future.

In conclusion, scTIGER offers the first tool for deciphering hidden regulatory infor-
mation from case versus control scRNA-seq data. Its ability to accurately reconstruct
cell orders, detect specific regulatory interactions, and avoid false positives highlights its
effectiveness in inferring potential gene regulatory networks. By providing insights into
cell-specific regulations and uncovering novel regulatory patterns, scTIGER contributes to
our understanding of disease mechanisms and offers opportunities for the identification of
new therapeutic targets and treatment strategies.

4. Materials and Methods
4.1. scTIGER Overview and Design

scTIGER is designed to construct GRNs using paired scRNA-seq datasets that are widely
available in diverse biological research. It mainly combines cell-type-based pseudotiming [24],
temporal causal discovery framework (TCDF) [25], and gene-specific permutation-based signifi-
cance testing to infer causal regulatory relationships among genes (Figure 1a). Firstly, scTIGER
takes two scRNA-seq datasets as input, such as case and control data. It initially normalizes
the data and clusters the cells by using the Leiden algorithm in SCANPY (version 1.9.1). For a
given cell type, scTIGER performs pseudotiming on their cells to obtain the chronological
cell orders, and then calculates the differential expression levels of genes. If one dataset
has more cells than another, its cells are randomly selected to match the cell numbers in
the other dataset. Secondly, scTIGER employs the TCDF method to predict causality by
using the differential expression vectors of given gene sets. TCDF uses attention-based
convolutional neural networks combined with a causal validation step, and it has been eval-
uated to be highly accurate and reliable [25]. When examining a particular gene, scTIGER
searches for the top k genes with highly correlated differential expression vectors. The
parameter k is user-selectable and can enhance both the search performance and running
speed, particularly when a smaller score is defined (e.g., 100 used in this research). If a
significant causality between a gene pair is detected, scTIGER outputs the causality and
number of delayed steps between them. Thirdly, positive regulation between two genes
is defined as a positive correlation of their differential expression vectors, while negative
regulation is defined as a negative correlation. To further remove false-positive predictions
and perform significance testing, we repeated random sampling of cells multiple times and
reran the prediction procedure. A statistical model (negative binomial) is then constructed
to estimate the frequency of how many times a prediction can be recalled in 100 repeats.
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Unlike traditional GRN inference methods that primarily use co-expression infor-
mation, scTIGER uses the gene differential expression matrix to filter out false positives.
For example, two genes may have a high correlation in one experiment but have no co-
differential changes under two experiments (e.g., the gj and gk in Figure 1b). Traditional
methods may predict that they are causally related. However, scTIGER avoids this by
noting that the differential expression levels of gj and gk have no clear patterns and are
likely to be white noise. Therefore, they will have no causalities with other genes that
have clear dynamical patterns (e.g., gi, gs, and gt, the right side in Figure 1b). This strategy
can not only filter more false positives, but also provide condition-specific or cell-specific
regulations. It is important to apply in case vs. control studies to understand the novel
mechanisms underlying cancer development. For a given gene set, scTIGER outputs the
regulated genes for each gene, as well as a merged network by combining the results of
all genes. It can be used to predict condition-specific GRNs for the same cell types and
cell-specific GRNs across different cell types within the same condition (Figure 1c). This is
especially useful to understand how different cell types exhibit similar mechanisms in one
specific condition, such as the health and cancer microenvironment, and drug treatment.

4.2. Data Preparation and Pseudotiming

scTIGER takes two scRNA-seq datasets as input, typically case and control data. The
first step involves data normalization and the identification of low-quality cells and genes,
following similar strategies as SCANPY [74]. Specifically, cells with low gene expression
counts or low total counts are filtered out. Additionally, cells exhibiting high mitochondrial
gene expression, which may indicate poor-quality cells, are excluded. Genes with low
expression counts across cells are also filtered out to reduce noise. Next, scTIGER performs
pseudotiming on the normalized cells to determine their chronological cell orders using
PAGA [24], utilizing the built-in function "scanpy.tl.paga" in SCANPY). In cases where
the two datasets have unequal numbers of cells, scTIGER employs a random selection
approach during each permutation to ensure an equal number of cells for calculating paired
differential expression levels of genes.

4.3. Detecting Causal Interactions

When examining a particular gene or genes, scTIGER searches for the top genes with
highly correlated differential expression vectors by calculating their Pearson correlations.
The number of top genes is user-selectable and can enhance both the search performance
and running speed, particularly when a smaller score is defined (e.g., top 100 genes in this
study). scTIGER utilizes the TCDF method [25] to predict causality by using the differential
expression vectors of selected top genes that are highly correlated to the gene to be analyzed.
TCDF uses attention-based convolutional neural networks combined with causal validation
steps, and has demonstrated high accuracy and reliability in temporal causal discovery [25].
In the context of scTIGER, the dataset X comprises N observed time series (i.e., differential
expression profiles of N genes) of the same length T (i.e., X = (X1, X2, . . . , XN) ∈ RN×T),
where each Xi = ∆e(gi) = ecase(gi)− econtrol(gi). The objective of temporal causal discovery
is to identify causal relationships between all N time series in X and determine the time
delay between cause and effect. The predicted causal relationships can be represented as a
temporal causal graph G = (V, E), where vi ∈ V represents a gene and each directed edge
ei,j ∈ E from gene vi to vj denotes a causal relationship from vi to vj.

The networks used in TCDF are called attention-based dilated depthwise separable
temporal convolutional networks (AD-DSTCNs) [25]. More specifically, TCDF consists
of N separate convolutional neural networks (CNNs), each for a time series Xj. The N
CNNs can be regarded as N independent and structurally identical temporal convolutional
networks (TCNs). One CNN is only trained to predict one time-series profile, based
on the past values of all time-series profiles. The internal parameters of each CNN are
trained by backpropagation and then used for unsupervised causal discovery. The jth TCN
corresponds to the target time series Xj and all other TCNs correspond to the exogenous
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time series Xi 6=j; all time-series of length T should be inputs; the outputs are the predicted X̂j
of Xj, the kernel weight Wj and attention scores aj, and the loss function is the mean squared
error (MSE) loss between Xj and X̂j. The attention score vector aj =

[
a1j, a2j, . . . , aNj

]
of the

jth TCN is element-wise multiplied with the N input time series, where aij represents how
much the jth network intends to input of Xi for predicting target Xj. A TCN predicts each
time step of the target time series Xj by sliding a kernel over an input Xi =

[
x1

i , x2
i , . . . , xT

i
]
.

When predicting the value of Xj at time step t (i.e., xt
j), the kernel with a kernel size K

calculates W �
[

xt−K+1
i , xt−K+2

i , . . . , xt−1
i , xt

i

]
if i 6= j, or W �

[
xt−K

i , xt−K+1
i , . . . , xt−1

i

]
if

i = j, where W is the learnt kernel weights and xl
i = 0 if l ≤ 0. PReLU is used as a

non-linear activation function in each hidden layer of a TCN. Each attention score a ∈ aj
is truncated to zero if a is less than a threshold τj and applied by Softmax function if
a ≥ τj. Thus, a set of potential causes for each time series can be created after comparing
all attention scores. An architecture example of deep-learning approaches in scTIGER is
shown in Figure S5.

Furthermore, the convolution layers of the TCNs are dilated convolutions. The kernel
of a dilated convolution should be applied to an area larger than the kernel’s size by
skipping a step size f , where f = cl for layer l and c is the dilation coefficient. In addition,
a residual connection is added after each convolution layer excluding the first layer in each
TCN. Permutation importance (PI) is used as a causal validation method, which is based
on the assumption that the predictions should be worse if the values of a true cause are
randomly permuted. The ∆L is the difference between the initial loss at the first epoch and
the loss when the trained network is applied to the permuted dataset. If the ∆L ≤ 0.8LG
where LG is the ground loss, then we conclude the current potential cause is a true cause.
The pseudotime step delay between cause Xi and target Xj equals the position of the
highest kernel weight. Note that we train all AD-DSTCNs by using the Adam optimizer
for 5000 epochs, with a learning rate 10−2, kernel size K = 4, dilation coefficient c = 4, and
the number of hidden layers L = 2.

If a significant causal relationship is detected between a pair of genes, TCDF reports
the causality along with the number of delayed steps between them. scTIGER utilizes this
information to selectively identify direct causal relationships between genes. By default,
scTIGER focuses on predicting direct causal interactions, but it can be adjusted to include
indirect interactions as well. Exploring indirect interactions can offer valuable insights into
potential network expansions, thereby enhancing discovery capabilities. The regulatory
relationship between two genes is further classified as either positive or negative regulation.
Positive regulation is defined as a positive correlation between their differential expression
vectors, while negative regulation is characterized by a negative correlation.

4.4. Permutation Testing

To further mitigate false positive predictions and conduct significance testing, we em-
ployed repeated random sampling of cells and re-executed the procedure. The frequency at
which a prediction is consistently recalled in a user-defined number of repetitions is com-
pared to the frequency of a recalled prediction in a background run. scTIGER incorporates
permutation testing, which inherently includes bootstrapping, enabling automatic assess-
ment of confidence in each edge. The number of identified edges at different confidence
levels, determined through permutation testing, is subjected to a negative binomial model
to calculate the minimum number of detections required for an interaction to be deemed
significant. For a given gene set, scTIGER provides the GRNs for each individual gene,
as well as a merged GRN obtained by combining the results of all genes after removing
background interactions.

4.5. Benchmarking against Existing Methods

We utilized synthetic and curated datasets which provide a list of true positive inter-
actions (available at https://doi.org/10.5281/zenodo.3378975, accessed on 31 July 2023).

https://doi.org/10.5281/zenodo.3378975
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These datasets were previously used to compare many GRN models such as PIDC, SINCER-
ITIES, SCODE, GRNBoost2, and PPCOR among others. We used two synthetic datasets
mimicking a linear trajectory (LI) and cyclical trajectory (CY), and two curated datasets
for hematopoietic stem cell differentiation (HSC) and mammalian cortical area develop-
ment (mCAD). All datasets contained 200 cells to perform the benchmarking. We assess
scTIGER’s performance in relation to the existing models PIDC, SINCERITIES, SCODE,
GRNBoost2, and PPCOR using these datasets.

Due to the lack of benchmarking datasets for paired case versus control data, the
pipeline was modified by removing the differential expression matrix calculation and
correlation steps. Thus, the benchmarking only covers the inference of edges using the
deep-learning algorithm, permutation, and significance threshold calculation steps in
scTIGER. Meanwhile, assessing edge recovery, edge directionality, sign, and self-loops were
disregarded to measure performance in an identical manner for all methods. To compare
the performances of these six methods, we calculated the precision, recall, F1 score, and
specificity for each on all datasets.

4.6. Validations on Real scRNA-seq Datasets

To validate the performance of scTIGER in detecting experimentally validated regu-
lations, we conducted two real case studies involving prostate cancer and neurons with
remote memory. In the first case study, we utilized scTIGER on scRNA-seq datasets
(GSE193337) obtained from patient samples with prostate cancer [30]. Initially, we identi-
fied potential regulations by using the co-differential expression profiles between prostate
cancer samples and corresponding normal prostate cells. Subsequently, we focused on
detecting common regulations between tumorigenic endothelial cells (ECs) and smooth
muscle cells (SMCs). Cell types were annotated using the ScType [75] and for downstream
analysis, we selected 97 ECs and 96 SMCs. To match the EC count in each permutation,
97 cells were randomly sampled from the corresponding normal tissue sample, which
contained a total of 447 cells. In the second case study, we applied scTIGER to scRNA-seq
datasets (GSE152632) obtained from mouse neurons in the medial prefrontal cortex, com-
paring neurons with and without fear memories [76]. Specifically, we examined regulatory
mechanisms related to memory formation by using the expression profiles of neurons sub-
jected to fear training using shocking (FC-pos) and a control group where mice underwent
cage transfer without any shocking (FC-neg). For each permutation, we randomly selected
192 FC-neg cells from a pool of 329 cells and an equal number of FC-pos cells.

4.7. Testing Robustness against Dropout Noise

To evaluate the robustness of scTIGER against dropout noises, we introduced artificial
modifications to the prostate cancer scRNA-seq dataset by incorporating varying levels of
dropout noise. This was achieved by replacing a certain number of counts with artificial
zeros, corresponding to a predetermined proportion of dropout counts. It is important to
note that the original datasets already contained inherent levels of dropouts. For each paired
dataset, we generated independent datasets with different artificial dropout proportions,
gradually increasing the total dropout proportions up to 0.95. Subsequently, we assessed
the overlap of predicted regulations for a targeted gene across all predictions, considering
different dropout levels as well as the original dataset.
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